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A very well known fact in syEEéﬁ tﬁeory 1s that feedback can be used

in order to improve system performance. In the theory of finite dimensional

linear time invariant systems one frequently deals with the question of how

oy

e §

to improve the performance of systems described by the following differential
equation:

x(t) = Ax(t) + Bu(t), (1.1)
where x(t) is an n-vector, u(t) an g-vector A (nxn), B(nxz) matrices over
the reals R. If constant state feedback is used,

u(t) = v(t) - Kx(t),
where K is an axn real matrix, v(t) a reference input, the closed-loop
system is described by:

x(t) = (A-BK)x(t) + Bv(t). (1.2)

A central result in the area of pole assignment [21] is that: (A, B)
is controllable ifffor every symmetric set A of n complex numbers, there is
a matrix K such that A-BK has A, for its set of eigenvalues. This implies
that, under the assumption of controllability, arbitrary pole assiqnment
can be accomplished by constant state feedback.

Rosenbrock in a subsequent publication, [19] showed that more than
pole assignment can be accomplished for the system in (1.1). This result
can be stated in the following manner:’

Let (A, B) be a controllable pair with controllability indecies
A]>A2_ . >x >0 Let 95 »1<i<z, be given monic polynomials satisfying the
divisibility conditions ¢1|¢i 1» and with Z e(¢1)=n, (e(-) denotes degree).
Then there exists a constant matrix K such that the given polynomials are

the non-unity invariant factors of sI-A+BK if and only if

k k
8o )> I 2y k=1,2,...,2, with equality at k=2. (1.3)
S H I




This result imblies that we not only can arbitrarily assign the

eigenvalues of A-BK, but the size and entries of the cyclic blocks

appearing on the main diagonal of the rational canonical form of A-BK [17].

It is important to note that since (A, B) in controllable so is (A-BK, B)
for any K (ie sI-A+BK, B are left coprime). From a frequency domain
input-output point of view this means that if

a(s) = (s1-A)"'8

~ is the input-output transfer function of the system in (1.1), where the

output is actually the state, and state feedback (1.2) is used, the closed
loop transfer function becomes:
H(s) = (sI-A+BK)™'B.
Makiﬁg the invariant factors of sI-A+BK equal to a given set {¢1} is
equivalent to saying [12] that.MH(s) the Smith-McMillan form of H(s) 1is
given by '

_ e1(5)
Myls) = diag(;;T;y) ,

(with appropriate modification if nge).
In many practical app]icatibns. physical constraints frequently

- necessitate the use of output rather than state feedback, .

u(t) = v(t) + Ky(t) , y(t) = Cx(t), (1.4)
where y(t) is an m-vector and C an mxn constant real matrix. In many

situations static output feedback is insufficient and dynamic output

- feedback is introduced:

2(t) = Fz(t) + Gy(t) (1.5)
u(t) = Hz(t) + Ky(t)
where z(t) is a q-vector and F, G, H, K appropriate matrices with real

entries.
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In 1ight of the above Rosenbrock and Hayton [20] attempted to

generalize Rosenbrock's earlier result to the output feedback case. They -

proceeded by using the frequency domain input-output point of view by
considering the strictly proper system

- =1, _ -1

P(s) = C(sI-A)' B = DLP Nep

and the proper compensator C(s) = AEEBLC (no Tonger static) as given by

the system matrices~(Rosenbrock sense),

I 0 0 I 0 0
PP(s) =10 Dp Np PC(S) =10 ALc BLc
0 -I 0 0 -I 0

The input-output transfer functions P(s) mxe and C(s) (zxm) have elements
in R(s), the field of rational functions in s over R. The matrices Np,
D p» ALC’ BLc have elements in R[s], polynomials in s. If the two systems

are connected as in the figure below (output feedback configuration),

4{1—1—.

a composite system for the resulting closed-loop system is obtained [20]

and then brought by strict system equivalence to the form:




I 0 0

1 Pg(s) = | O A cDpp*B cNpp Ale
r.

0 -NRP 0
. where DE;NLP = NRPnﬁg are left and right matrix fraction descriptions of |
n : the system and AiéBLc a Teft matrix fraction description of the compensator

[5, 12]. The closed-loop transfer function is:
6(s) = Np(Ry (DpytBy cMep) A -
3 The basic result in [20] is the following:
Let P(s) = NRPDE; be aﬁ mx% strictly proper transfer function of order n,
with [32:] column reduced with column degree Ay22p> ... 21,0 (Ai are
£ controllability indecies) and W the largest observability index. Let
¢ I<i<e b: given polynomials satisfying the divisibility conditions ¢1.|¢1._1
and with 1.Z]e(.yi) = n+z(u]-1). Then a sufficient condition for the

existence of a proper 2xm compensator C(s) = AEéBLC such that the invariant

factors of ALCDRP+BLCNRP are the ¢y is:

) X (1.6)
1Z]e(oi)g_iz]x1 -] k=1,2,...,2 with equality at k=¢.

One should immediately notice several basic differences of this result
as compared with the earlier state feedback result.

a) In addition to the controllability indecies other indecies (namely
observability) become important.

b) This is only a sufficient condition.

c¢) Dynamic feedback has been introduced.

d) As no coprimeness conditions have been imposed assigning the
invariant factors of ALCDRP+BLCNRP does not imply that the invariant
factors of some sI-A* have been assigned where A* comes from a

minimal realization, but rather that some realization (not minimal)




can be found such that for the A matrix corresponding to it, sI-A
has the given 1nvariaﬁt factors.

e) The order of the compensator used is z(u]-l). There exists the
possibility that a better result can be stated employing a lower
order compensator.

Several attempts have been made to "improve" the output feedback
invariant factor result [6,7,9,10,15]. A partial list of some other recent
publications on the general problem of pole assignment can be found in the
references.

In this paper working in the frequency domain with input-output
transfer functions and using a formulation employing matrix fraction
descriptions and Generalized Sylvester Resultants, we are able to give
short new proofs of Rosenbrock's state and output feedback results.
Furthermore we demonstrate that such a structure easily lends itself to a
"generic" formulation of the invariant factor problem. This allows us to
derive necessary and sufficignt conditions for generic invariant factor
assignment in several cases, and prove some other interesting results as

well.
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2. Formulation

Throughout the paper we assume the following feedback configuration:

where P(s) is then mxz input-output transfer function of the given
strictly proper system and C(s) the sxm transfer function of a proper
compensator which is to be computed. Both P(s) and C(s) have elements
in R(s). Without loss of generality we assume that m>¢. In the case
that 2>m a "dual" formulation and results can be obtained. The closed
loop transfer function is given by: ‘

6(s) = P(s)(I + C(s) P(s))™’
where we assume that (I + C(s) P(s))'.l exists. Since P(s) and C(s) are
rational matrices they can be "facfored“ into polynomia] matrices, [5, 12].

We use the notation:

P(s) = BRPAig a right matrix fraction description (MFD) of P(s),
= ApBp,  a left MFD of P(s),
= NRPDﬁ; a right coprime (or irreducible) MFD of P(s),
DigNLP a left coprime (or irreducible) MFD of P(s),

where BRP’ ARP’ NRP’ DRP etc are polynomial matrices, where the indeterminate
s has been supressed for simp1ic1ty; The closed loop transfer function can

6
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then be expressed in the following ways:

6(s) = P(I + cP)~"
-1
= Bpp(A cArp * B cBrp) A - (2.1)
_ -1
= Npp(A cDpp *+ BieNpp) Ac (2.2)
_ -1
= Npp(D cDpp * Ny cNpp) D¢ (2.3)
L,
) $
=N o'] D
:‘ RP LC
: = ﬂRP o BLC least order (or irreducible) (2.4)

where ﬁRP’ » are right coprime, s, BLC left coprime. The description (2.4)
is not unique since if N = ﬁRPE’ D=H BLC’.E = HeE, E, H unimodular then
N3'1'§ is also a least order, (irreducible polynomial matrix description
1 PMD [12]). Clearly since no coprimeness conditions have been imposed
descriptions (2.1), (2.2), (2.3) are not least order.

, If M(s) is the Smith-McMillan form of G(s)

; ol '
3 M(s) =

L 0 -
where ¢, 1<i<z are monic and satisfy the divisibility conditions ¢1|¢1_]

i 2<i<z2 using ideas of system equivalence one can show [7, 12] that
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where E, H are unimodular matrices. Therefore we call the {¢i} the

invariant factors (or polynomials) of the closed loop system. It is also

clear that the {¢1} are the non-unity invariant factors of sI-A where A
comes from some minimal realization of G(s).

If on the other hand we use a description of G(s) which is not least

order G(s) =B v"l A with the Smith form of ¥ being (:w" . ° :‘ R

0 "
where wilwi-l 2%ise, we will have [7] ¢i|¢i 1sist. The {y;} will be the non-
unity invariant factors of some sI-A where A comes from a non-minimal realiza-
tion of G(s). The output feedback results of Rosenbrock and Hiayton [20] deal
with this problem.

The difference between the two approaches stems from the fact that one can
work with either externaT or internal descriptions of systems [12]. Fram the
results of section 6 it is evident that in the "generic” case the difference
disappears.“ It should also be mentioned that if ne coprimeness conditions need
to be satisfied as in Rosenbrock and Haytonv[20]. the proofs of these rgsuIts

are much easier to construct.

It is clear from the above that a very natural way to proceed with

the invariant factor assignment problem is the following:

Given a strictly proper system P(s) = NRPDi; find conditions for the
existence of a polynomial solution X, Y to the polynomial équation:
X DRP +Y Nep = f (2.5)
where:

1) ¢ is equivalent to diag (¢1), ¢; a given set of desired closed-loop
invariant factors,

2) x~ly exists and is proper,

3) Npps ¢ are right coprime an& X, ¢ left coprime.

If one considers invariant factor assignment as Rosenbrock-Hayton [20],




rd

] then the 3' = condition is dropped.
(1

X =9l - NNLP

Y =9+ NDLP

where UDRP + VNRP

coprime [7, 12]) and N is an arbitrary polynomical matrix.

appropriately choosing N they show that X']Y exists and is proper (if the

given ¥ satisfy (1.6)).

The way in which Rosenbrock-Hayton [20] proceed is to use the fact

[18] fhat all polynomial solutions to {(2.5) can be expressed as:

= I (which is guaranteed since Dpp> Npp 2re right

By

We proceed in the following manner: Let NRP’ DRP’ X, Y be given as:
Dgp = Dyt + Dy 51+ ...+ D
Ngp = Nes®+ N 1s¥1 + L N,
X=X sk e x s E e ey
R AR L A A
and Tet XD, + YNgp = 0,
% = ¢k+t_]sk+t'1 LARTREL K

Then equating coefficients:

[Xk'] s Yk-] 9 e

Xgs YolSi(Dgps Nep) = Doy qs «-- ¢5]
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The real matrix Sk(DRP’ NRP) is the k- order Sylvester Resultant of Dpp»

Nep [16] (a k(m+e)xe(t+k) matrix). Clearly if a & exists which is

-]Y

equivalent to diag (¢i)’ in the range space of Sk(DRP’ NRP) where X
exists and is proper with NRP’ ¢ right coprime, X, ¢ left coprime we have

a sufficient condition for invariant factor assignment. It would therefore
be very helpful if we knew the rank of the resultant operator. The

following result taken from [1, 16] is crucial for our investigation.

Lemma 2.1 Let ND'] be proper, mx2 with observability indecies u.. Then

1

rank Sk(D, N) = (e+m)k - ] (k’“i)'
j oy, <k
iiuj

It would also be very helpful to know under what conditions is diag
(¢i(s)) equivalent to some element in the range space of Sk(DRP’ NRP). The

following lemma taken from [20] will be used for this purpose.

Lemma 2.2 Let o, 85, be given integers satisfying ay2ay>. . .20,>0,

%
B12B52...28,>0. Let {¢,} 1<i<g satisfy the divisibility conditions

¢i’¢i-1 2<i<g. Then a necessary and sufficient condition for the
existence of an 2xz polynomial matrix ¢(s) equivalent to diag (¢i) and

-, -8
satisfying 1im [diag(s ')e(s)diag(s i)] =1 1is

saa

Z e(¢1) > Z o +8, k=1,2,...,2 with equality at k=%.
$51

Throughout this paper we shall use the following definition of
genericity:

Definition: A set SC:R is called generic if it contains a non-empty

Zariski open set of R [24].
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3. Rosenbrock's State Feedback Result

In this section we shall use the formulation introduced in the,previous

section to give a new short proof of Rosenbrock's state feedback result [19].

Theorem 3.1 Let P(s) = (sI-A)']B (where (A, B) is a controllable pair)
with controllabiiity indecies A]zgzg,..gjlgp. Let ¢ 1<i<2 be given monic
polynomials satisfying the diyisibi1ity conditions ¢i'¢i—1’ 2<i<2 and with
3 ote) = .

Then there exists a constant C such that the given polynomials are the

non-unity invariant factors of sI-A+BC if and only if
k k
) °(¢i) > A k =1,2,...,2, with equality at k=¢. (3.1)
i=1 i=1

Proof:
(Sufficiency). P(s) is nxe, strictly proper with observability indecies

all equal to p=1. Let P(s) = NRPDQ; where

D D A
[ R"H BC] diag(s ') + L(s), b, _ invertible, L(s) contains

Nre
lower order terms, [12]. This implies that
=D,s +0D 3 + ...+D
RP = Pa, - 0
x1-1

Npp = NA1_15 oo+ N
S1(Dps Npp) = Day DA O,
0 NA]-1 No

From Lemma 2.1 rank S1 = n+2. Now the number of non-zero columns of S.I is

(A1+1) + (A2+T) + ...+ (A2+]) =n+ty, Llet C = x'1Y where

-1

Y = Yo (constant).

N
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Then by appropriately choosing Y° any polynomial #(s) can be reached which
' -A_.
satisfies 1im (o(s)diag(s ')) = I. But if the {¢;} satisfy (3.1) then

[es
from Lemma 2.2 with @s=ujs B;=0 a polynomial ¢*(s) equivalent to diag(¢i(s))

can be constructed which satisfies 1im (o*(s)diag(s-xi)) = I, Let Yo* be

the Yo that corresponds to it. Thez*E = Dtho* is the desired compensator
since G(s) = (sI-A+BC)'1B = NRPQ*(S)-] both being irreducible representations
([12], Lemma 6.5-9, p. 446).

(Ngcessity). Suppose that C is a constant that makes the closed loop
invariant factor be equal to {$;1. Let G(s) = NRP(DRP+CNRP)-1. Clearly

NRP’ y = DRP+CNRP are right coprime.

This means that the invariant factors of Y are the {¢ }.

Now lim (v d1ag(s 1)) = 1im ([I C][DRP]d1ag(s 1)
S S N
RP

= Dhc

v satisfies 1im (Yl diag(s 1.))
S

1

where det Dhc # 0. Clearly Y = Dhc

= [ and has invariant factors {°i}' From Lemma 2.2 the degrees of the {¢i}

must satisfy (3.1).
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4. Rosenbrock-Hayton's Output Feedback Result

Ideas developed in section 2 can be used to give a new short proof of

Rosenbrock-~Hayton's output feedback result [20].

Theorem 4.1 Let P(s) = NRPDi; be an mxt strictly proper transfer

Nep

21,20 (Ai controllability indecies), and uy the largest

function of order n, with l:DRP:l column reduced, with column indecies

A2Ap2 .o
observability index. Let ¢4 1<i<2 be given polynomials satisfying the

L
divisibility conditions ¢]e;_ 1 and with Z]e(¢i) =n + 2(uy-1).
i=

Then a sufficient condition for the existense of a paper %xm compensator
C(s) = AEéBLC such that the invariant factors of A cDpp * BLCNRP are the
{¢i} is:

k k
J e(¢i) > 21(Ai+p1-1) k =1,2,...,2 with equality at h=2. (4.1)
i=1 i=

Proof:

Orp | | Phe A ;

= diag(s ') + L(s), Dhe invertible with L(s) containing

Nep
lower order terms. This implies that

DRP = DA]s + DA .15 + ...+ Do

1
A]-]
NRP = NA]-.IS + o s e + No

and Su](DRP’ NRP) the uy-order Sylvester resultant of Dpp» NRP‘(Z.G).

From Lemma 2.1 S. (Dpp, Npp) 1S rank n+2uy,. Now the number of non-zero
) RP* "RP 1

columns of Sul(DRP’ NRP) is (x]+1)+(x2+1) + ...+ (A£+1) +.(u]-1)z = ntey.

1

Let C = X_'Y where

Lh'-]

X=X + ...+ X

91'15 . 0
Yy =Y #-l
p-18 L

13
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This means:

[Xu]_] ,Yu]-] 9ee e ,XO’YOJSLI] (DRP’NRP) = [°A1+u]_] ’o.o . ,Qo]o

Since S (DRP’NRP) is rank n+tu; any polynomial ¢(s) which satisfies
¥

, -\u =,
lim(diag(s | )e(s)diag(s 1)) = H

S
H constant can be reached. In particular any polynomial ¢(s) for which

the corresponding H is the identity. Since
© X tug -1 _
" Y][ QRP] = X, -10hcdiag(s e T

Npp

(L(s) contains lower order terms) the X corresponding to such a ¢(s) must

have Xu R D;l ieC = X'1Y must exist and be proper [12].

1 .
But if the {¢1} satisfy 4.1 then from Lemma 2.2 with ai=1i Bi="1'1 a
polynomial ¢*(s) equivalent to diag(dﬁ(s)) can be constructed which
satisfies

. =(w Y
lim(diag(s Yo*(s)diag(s ")) = I.

S»x
Then C = X']Y, for any X, Y which maps to ¢*(s) is a compensator which

satisfies the requirements of the theorem.
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5. The Equation XD + YN = ¢

It has been mentioned in section 2 t4atthis polynomial matrix equation
plays a key role in the analysis of the invariant factor problem. Using

Sylvester Resultants we are able to prove the following two results.

Proposition 5.1 Let P = NRPDi; be an mx¢ strictly proper transfer

function where [?Rf] is column reduced, with column degrees Ay =2 and
N

R
observability indecies By T M
Dgp = Is* + 0 ¥ 4+ L 4D, N = N shT e e
Let Z= {oeR(“q)"zh = 1s™9 + @Hq_]s"" +ta)
Q= (X =359+ x s e xL v ey s v

A necessary and sufficient condition for the existence of a polynomial
solution X, Y to XOpp * YNRP = ¢ in the class Q, for every ¢ in Z is q>u-1.

Equation XDRP + YNRP = ¢ with the conditions imposed can be written as:

[I, Y 9 oo XO, Yo]sq+](DRP, NRP) = [I, °A+q‘1’ LY °°],

q
where Sq+1(DPP’ NRP) is thought of as an operator from R2(2+m)(q+])
into Rz(A+q+1)z‘ From Lemma 2.1

rank Sk = (2+m)k 1<k<p

= (2+mk - m(k-u)  u<k

Therefore

a) S1, 52' . Su-l are not onto,

b) Su is onto and one-one,

c) Su+1’ Su+2 ... are onto.
Proof:

(Necessity). Assume that q<u-1 and ‘that XDRP + YNRP = § has a solution

in Q for every ¢ in Z. Thinking of (X, Y) as an element in RE{(2¥ma*m)

15
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and ¢ as an element in RL(A+Q)£ one can see that the set of ¢ which can be

reached from elements in Q, form a set of dimension less than 2(q+ir)se.

wu y

Therefore q>u-1.

—

(Sufficiency). Su+k in onto for k>0. This means that for any ¢ in Z

i! . there exist X, Y given by

- X = Xu+k_]S“+k'] T

| V¥ ST e ey

é‘ such that

3 DX hkets Yoeke1s ==+ Xoo YoISuak = [Is &4 apze -0 8]

For this to happen Xu+k_] = I which implies that (X, Y) ¢ Q.
This result addresses the following question: Suppose we fix the

order of the proper compensator (order is qt), as well as the observability

indecies (all equal to q). What are the possible ¢ (closed loop denominator
matrix) that can be reached. Since Ay = A and My T W the result concerns
the "generic" case. In the next section these concepts will be used for
obtaining necessary and sufficient conditions for generic invariant factor. :
assignment.

A polynomial solution X, Y to XD + YN = ¢ is called an acceptable
solution 1f X1Y exists (ie detX#0) and is proper.

Proposition 5.2 Let N (mx2), D (&xt), ¢ (exe) be polynomial matrices,

A, G non-negative integers, n = A u = 33 and let W, Z, S be the sets:

SA-1

. (mee)ny o o 1A N A1
W= {(N,D)e R | D= Is74D, 487 #...4D , NeNy _ 8™ '+ . 4N}

2
Z={¢c¢ R(“q)" |o = 1sM %, s”q"1+...+o°}

A+q-1

. (m+2)n | For which there exists an acceptable solution
S = {(N,D)e R | x)'v"t0 XD+YN=o for every ¢ in Z. }
A necessary and sufficient condition for S to be a generic subset of

LU LIPT
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Proof:

(Necessity). Suppose that S is generic and that q<y-1. Show a contradiction.

The set F C p{m+2)n for which rank S,(D,N)=(m+e)i for 1<i<y and rank
Su+1(D,N)=(m+z)u+z is generic. It certainly contains a Zariskiopen set and
it is non-empty since any (N,D) which gives rise to an ND™! with equal

observability indecies must belong to it (Lemma 2.1). As a matter of fact
any (N,D) in F must have equal observability indecies because otherwise one
of the rank conditions would be violated (Lemma 2.1). It follows (Corollary
1 Bitmead et al.) that for any (N,D) in F, N,D are right coprime, and ND™!
has equal controllability indecies as well.

Let N,D be an element in SOF. For any such element (Corollary 2, [20],
p.848) it must be that a(Y)<q, (X,Y) some acceptaﬁ1e solution. But this
implies that any acceptable solution must be of the form:

X = Is“+xq_]s"']+...+xo Vo= Vs
which means (X,Y)eQ, Q as in proposition 5.1 and q>u-1. This is a
contradiction.
(Sufficiency). Let q>u-1. From Proposition 5.1 we have that Sq+1(D,N)
is onto for any (N,D) in F. This means that there exist X,Y such that

= q = q Y
X Xss +...+Xo Y qu +...Y°

and. [xq,Yq,...xo,Yo]Sq+1(D,N)a[I,oA+q-1,...,¢°]
for every ¢ in Z. It follows that Xq=I and that (X,Y) is an acceptable
solution.

This result is stronger than Proposition 5.1. The restriction of
searching for a solution of XD+YN=¢ that belongs to a certain class Q can
be removed. This is because an acceptable solution (X,Y) to XD+YN=¢ with
N,D,¢ as above, must belong to the class Q, there are no acceptable solutions

outside Q.
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The previous two resﬂ1ts dealt with the case when P = NRP Dié is a
strictly proper transfer function with equal controllability indecies.
Knowledge of the rank of the resultant operators Si(DRP’ NRP) played a key
role in their proof. Proposition 5.3 addresses the question of the generic
rank of Si(D, N) when P = N 0! is an xe strictly proper transfer function

with an arbitrary set of controllability indecies A\ 2 Ao 2 ... Az 2 0.

Proposition 5.3. Let P =N D'1 be our 2x% strictly proper transfer function

with controllability indecies M2z cee

)
1D 1 As
[]=[:]diag (s 1) +L(s)

N 0

L(s) contains lower order terms.
2ne 2ns

>0, =+ . +2y,

u’% and

The pair (N, D) can be thought of as an

element of R The set WcR

, of (N, D) for which Si(D,PJ) has rank 22i

for 1 £ 1 S u is a generic subset of Ran.

Proof :

It is clear that the set of (N, D) for which Si(N, D) is rank 2is for
1 <3 2uisa Zariski open set. The difficulty lies in proving that it is
indeed non-empty. —

We first construct the submatrix Tu(N) of. Su(D’ N) and show that it is

generically full rank.

F"Al-u - Ny --. 0 0
TU(N) = = [Bll'l,‘.'BoJ
N
N N N N
Xl-l AI-Z 1 0
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where B, is the ith pexe block column of Tu(N)' Form Tu*(N) from Tu(N)
deleting the columns indicated: |

Fr?@ the tth columns of the B;'s keep the 2th columns of BO""’Bxl-l
and remove the rest.

From the (2-1)st columns of the B.'s keep the (2-1)st columns of

J
Bo,...,B -1 and remove the test. And in general from the (2-i)th columns
Ay 17
of the Bj s keep the (2-i)th columns of BO""’BA -1 and remove the rest.

2=
What remains is the nxn matrix Tu*(N)' |

Clearly the set V = {N:R"z : Tu*(N) rank n} is a Zariski open set in R

We claim that it is non-empty. This can be seen from the fact that an N*
exists that makes Tu*(N*) after a proper rearrangement of its columns equal
to a lower triangular matrix with 1's on the main diagonal.

It is now easy to see that $ (I diag(s i) N*) is rank 2u2 (and that
rank Sy(I diag(s My N4y = 2isfor1 €4 su).

Expressing it in a different way Proposition 5.3 guarantees that "almost
all" wx¢ strictly proper transfer functions of McMillan degree n = A+ Ay 4

cee A= %- with arbitrary controllability indecies i, 2 Ao 2 sss ZAp

" have equg] observability indecies u.




6. Invariant Factor Results

In section 2 we made a distinction between what we call the invariant
factors of the closed loop system and what has been used by Rosenbrock-
Hayton [20]. The difference arises because we insist on working with
irreducible polynomial matrix descriptions (PMD's 12) whereas Rosenbrock-
Hayton [20] choose not to. It can be said that since the difference is
due to possible cancellations that in some ."generic" sense the two
definitions are the same. In this section we will exploit the ideas
presented thus far in order to obtain necessary and sufficient conditions

for invariant factor assignment in several cases.

1

Theorem 6.1 Let P=ND"" be an zxz strictly proper transfer function

where A>0 and

D= IshD _,s* T+ 40
_ A=1
N = NX_]s +...+No
_ Atq A+g-1
 Let q>0 and ¢(s) = s 2 +¢x+q-ls ooty
Let W= {(N,D,¢)eRZM ta+q For which there exists a proper

compensator of order 2.q making
¢1'¢2""¢z=¢ the invariant factors

of the closed loop system.
Then g>A-1 is a necessary and sufficient condition for W to be a generic
subset of R2122+A+q .
Proof:
(Sufficiency). Let g>x-1 and t=2122+x+q. Show that W contains a non-
empty Zariski open set. Let ¢ be the diagonal matrix

$ = d1a9(¢1) » b5 = 9. ‘ (6.1)

Since g>A-1 (we are dealing with the square case 2=m.u-&;i=x). The set
FC Rt, of (N,D,¢) for which Sq+](D,N) is full rank is generic. Let
20
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§§+1 be the matrix ([iq+1)mteqlx(a+q)2) obtained from S ) by removing the

q+

first 2 rows and ¢ columns. Clearly S is generically full rank. This

q+l
implies that for any ¢ as in 6.1 there exists X=Isq+...+xo, Y=quq+...+Y°
such that
[Yq’.--. XO’YOJSq+] = [¢)\+q-'|’“.'°0]-[n)\-]"”DO’O"'O]
One such X,Y(C=X']Y proper of order 2q) is given by:
[Yq,xq_],...,xo,yo] = ([¢A+q-]’...,Qo]-[DA-]’.... 0])
(6.2)
&5 )T
*3q+179q+17 g |
§2;1.§§+1 js invertible since §a+1 is full rank and with fewer columns
than rows.

This means that Xi, Yi are rational expressions in the parameters of
N, D, 6. Now the set E C Rtfor which ¢, X are left coprime and N, & right
coprime is a Zariski open set, since coprimeness is a condition satisfied
when certain matrices are full rank (Corollary 1, [1]).

The key point to demonstrate is that E is non empty. We claim that
a = (Na’ D, ¢a)

[ )
D =Is* ,N =1, 0 =1sM%
a a a

N
rank for all s [19]. Now for this specific o, the solution given in (6.2)

is a point in E. Clearly Nc. ¢, are right coprimé since [ oa] is full
a

can easily be computed to be
X =19, v =1.
a a
Clearly Xa » 9, are left coprime.
Sfnce G(s) = N(XD+YN)'5(for any (N,D,¢) in E with X,Y given by (6.2) is
a least order (irreducible) polynomial matrix fraction description of G(s)
and -

XD + YN = ¢
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the invariant factors of G(s) are the ¢,. Clearly ECW and thus W is a
generic. subset of Rt.

(Necessity). Let W< R® be the set of (N,D,4) for which there exists a

1

proper compensator C = X 'Y which makes $1=0,%. . .=, =¢ the closed loop

invariant factors. Assume that it is generic.

1

For any acW the following must be true. Let C = X" 'Y be the proper

- compensator of order 4q that accomplishes the task. We choose X to be

row reduced and Tet 912952 ..29,>0 be the row degrees q1+q2+...+qz=zq, and
th = I, -the highest row degree ccefficient matrix of X.
The following three facts must be true for such an a.
1) -The matrices N, XD+YN must be right coprime and X, XD+YN must be left
coprime. Since
o(det(XD+YN))= ag+2q
if there are cancellations then the resulting denominator matrix will be
XD+YN where
8 (det(XD+YN) ) <a2+2q.

But then the {°i=°} could not be the invariant factors of the closed-loop
L

system since Z]e(¢1) = AL+Aq.
i=

2) 1In actuality the row degrees of a row reduced representation of

C= XY must all be equal to q. T
-q. -
Now = T1im diag(s ')[X v][o] diag(s™) = 1.
S N

From 1) XD+YN has invariant factors {¢i-¢}. From Lemma 2.2 this implies that
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k k
) 9(¢i)3_21l+qi k=1,2,... with equality at k=¢.
i=1 i=

This implies A+q 2 A+, If 9;<q then q]+...+q2#zq.
Therefore 9y=q. But 2x+2q 3_2A+q]+q2 = > q,7q and generally 9;7q.

3) Since X,Y must be of the form
- 14 q-1 .y <9 q-)
X=1Is +Xq_]s FooatXy o ¥ = Y ST 4T LY

Q"  q-1
it must be that o |
XD+YN = ¢ 0 [, ¢ the given polynomial.
0 ¢
In general
= 1At A+q-1 e T
XD+YN = Is ) 4q-1° ACRRRA

But since the invariant factors of 3'are $1765% - =9, =¢ this means that
the gcd of 1x1 minors in particular must be ¢. This is a polynomial of
degree Ax+q. All off-diagonal entries in ¢ are of lesser degree or zero.
They cannot be of lesser degree therefore they are zero.
With all this in mind suppose now fhat q<A-1. Then for any a in
W, ie for generic a we must have
[I,Yq,...,XO,YOJSq+1(D,N)=[I,ox+q_],...@OJ
——

¢ diagonal

Look at the first row of this matrix equation:
x,sq+1(D,N)=[1:E;;;E, ¢A+q-1’°"'°""'fg:2;;;?l =
] L L
where y is a 1x2(g+1)2 vector, Sq+](D,N) a 2(q+1)2x{a+q+1)2 matrix and ¢
a (Ar+q+1)2 vector.
Let u=2(qg+1)2 , v = (a+q+l)e .

If we partition Sq+1(D,N) = [A,B]
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where A is uxu and B is uxv since q<i-1 it is clear that u<v. The matrix

A is invertible for a generic subset of R® (A has a resultant structure).
y=guA']

where ¢ is the first u entries in the ¢ vector. But since there are more

equations than unknowns it must also be that

(6.3)

where $yoy 2T the remaining v-u entries in ¢. But relationship (6.3) is

Y8 =9,y
only satisfied on a Zériski ¢1osed set of Rt. This is a contradiction.
This completes the necessity part of the theorem.

Theorem 6.1 in effect says that for almost all strictly proper
transfer functions of McMillan degree n=it and equal controllability
indecies, a necessary and sufficient condition for the existence of a
proper compensator of order 2q which makes the closed-loop invariant
factors equal to $=61=. . .=dy for almost all ¢ of degree A+q is q>A-1.

It is necessary therefore that the order of the compensator be greater
than or equal to 2(x-1). It should be emphasized that here we are
considering the square case where A=u, u the observability index of the
transfer function P. Thus 2(u-1) is the more appropriate bound.

Theorém 6.1 addfésses the case.of strictly proper transfer function of
McMillan degree n = A% and equal controllability indecies. Theorems 6.2,
6.3 and 6.4 deal with the more general case.

Theorem 6.2. Let P = ND'1 be an 2xg2 strictly proper transfer function where

)\13122...27\120,“=7\1+12+--o 7\2,\1=ﬂsa"d

)
D I A
[ :l = [ :] diag(s ') + L(s)
N 0

with L(s) containing lower order terms.

Let {¢1} be £ monic polynomials ¢1|¢1_1 2 $1 %2 such that °(¢i) =1 +q.




o
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Let W = {(N,D,¢1,.,,,¢£} e R?nz+xl+q For which there exists a proper compen-
sator of order 1q making {¢i} the invari-
ant factors of the closed loop system.

Then g 2 u - 1 is a necessary condition for W to be a generic subset of

R2n£+kl+q.

Proof: Let NC Rt (t = 2nz+11+q) be the set of (N,D,¢,...,¢£) for which there

exists a proper compensator C = X'IY, of order 2q which makes {¢i} the closed

loop invariant factor. Assume that it is generic.
For any aed the following must be true. Lef C= X'lY be the proper
compensator that accomplishes the task. We choose X to be row reduced and

let 9 2 q, 2 ... q, 2 0 be the row degrees 9y +qp + ... +q, = 2q and

X, . = I the highest row degree coefficient matrix of X.

he
The following three properties must hold for such an «a.

1) The matrices N, XD + YN must be right coprime and X,X? + YN mus. pe lest
coprime, (follows proof of Theorem 6.1).

2) The row degrees of a row reduced representation of C = X'1Y must all be

equal to q.
=4; “A4
Now 2im diag(s ') [X Y] [ D | diag(s ') = I.
e :
N

From 1) XC + YN has invariant factors {¢5}. From Lemma 2.2 this implies

that
k k ‘
T oe(es) 2 1 A+ P i=1,2,...k with equality at k = &.
=1V y=p )

This means that 11 +q2 At Q- If 9; <4 then qy + ... q, ¥ 2q.

Therefore 9; = Q. Proceeding in the same fashion Ay +2p * 2q 2 A+

Ag + Gy + gy, means q, = q and so on, resulting in 9 = Qq 1sis.




-
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3) Since X, Y must be of the form ’

= 19 q-1 = q
X=1Is" + Xq_ls ..o+ Xgs Y Yq sT+...+ Y,

it must be that

|

X 4y 0
XD + YN =

X X

L x  x X 6,
where {¢i} are the given polynomials and the X's indicate possible non-

zero locations. In general

Ai+q
XD + YN = I diag(s ) +Q(s) = ¢ .

Since {¢1} are the invariant factors of ¢, this means in particular that
¢£(e(¢£) =2, + q) is the gcd of 1x1 minors of @. Since off-diagonal
entries in the 2th column are of degree.1ess than A *+ 9 they must be
zero. Furthermore the gcd of 2x2 minors of ¢ is ¢£-¢2_1(e(¢2~¢2_1) =
gt A gt 29). Since off-diagonal entries in the -1 column are of
degree less than Agop * Qs above the diagonal entries must be zero.
Continuing in this fashion we see that claim 3) is true.

Suppose now that g < u - 1. Then for any a in W(i.e. for generic
a) we must have:

[T, Ygs.uesXgs Yol 5oy (D5 N) = [°*1""' coes 0p]

where §§+1(D’ N) is the (q+1)22 x n + 2(q+1) matrix obtained from
Sq+1(D, N) by deleting its all zero columns. Looking at the first row

’

of this matrix equation:

x§q+1(D' N) = [1,...,¢11+q-1,0,...,0,...9¢0,0.....0] = 1
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A contradiction follows as in the proof of Theorem 6.1, where now use

is made of Proposition 5.3. This completes the proof of Theorem 6.2.

We see that as in the case of equal controllability indecies q 2 y - 1

is a necessary condition for generic invariant factor assignment, where u is

the observability index of the transfer function P. We believe than q =
u - 1 is a sufficient condition as well, as can be seen from the next two
results, where it is shown to be the case when the controllability indecies

are as in a) or b).

a) 2|£,k?.1,11=...=1£=k+2,1z1=...=A£=k.
' 2 2
b) 3|z, k21, Ay = ... ® A&.= k + 2, §£'+1 = ... }g& =k +1,
3 3 3
122‘ =...=X2=k.

34

Theorem 6.3. Llet P = ND'1 be an £x2 strictly proper transfer function where

f is even, k 2 1,

11=12=.f.=>‘z=k+2,x£ =...8A2=k.u=k+1
2 21

D I A
[ :l 2 [ ] diag(s ') + L(s) .
N 0

Let {°i} be % monic polynomials ¢1|¢i-1 2 £ 1<% such that e(¢i) = *q.

Let
For which there exists a proper
compensator of order %-q making

{¢i} the invariant factor of
the closed loop system

Wom {(N.Dsbyseenrdy) eR2NAHA 4

Then q = 4 - 1 is a sufficient condition for W to be a generic subset of
2n +a,4q
R 1
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Proof:

let g=u-1andt=2n2+1; +q. Show that W contains a non-empty

~ Zariski open set. Since g =y -1 the set Fe Rt of (N,D,¢1,...,¢z) for

which Su(D’ N) is full rank is generic. This implies that for any ¢ of the
form

¢ = diag(ey) »
a unique solution 1:0X=Isq+...~|»x0 Y=y s9+...%y

q 0 to .
XD + YN = ¢ exists given by:

e T - oz -1
[I’ Yq, xq_lp oo 0 XO’ Y0] [°X1+q’...’°OJSu
This means that Xi, Y.i are rational expressions in the parameters of N,D,¢1,
es,. Now the set E = Rt for which ¢, X are left coprime and N, right

coprime is a Zariski open set. They key point is to demonstrate that E is

non empty. It can be verified after some algebraic manipulations that with

B k+2 . — -
I, s 0 1, 0
2 2
D= N =
k
0 I s I, s I,
2' -
I 3 | 2 2
I e 0
(1"
2
0 = where ¢, = (s+1)%, ¢ = (s+1)%(s%1) ,
0 I
L2
L z

S (D,N) is invertible and X,¢ are left coprime and ¢,N right coprime.




-Let {¢1} be & monic polynomials °il¢i-1 2siss
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Theorem 6.4. Let P = ND'1 be an &x2 strictly proper transfer function where

3|2, k 21, B=kdl,

Ay ® e =2, = k+ 2,2, = ... =2,, =k+1, 2 = ,,..=2), =k
1 [ * 22 ' 722 £
3 3t 3 3

D 1 A
[: :l = [: :] diag(s ') + L(s) .
N 0

such that 6(s;) =
A+,
Let

For which there exists a
proper compensator of order
2q making {01} the invariant

factors of the closed loop
system

- ' 2nz+xl+q
w = {(N309¢19---s¢£) ER

Then q = u - 1 is a sufficient condition for W to be a generic subset
2ng+i, 4
of R 1 .

Proof: The proof proceeds in a similar fashion as Thm. 6.3. The point

which shows the non-emptiness of W is the following:

s

I

O wWie

sk+2

I

0

Wi

0

sk+1 0

—

I

£
3

0

I

o

rﬁ
wi

s

W=




where o3 = (s+#1)%, ¢, = (s+41)5*L, o) = (se1) BT (1),

Remark: Sufficiency proofs for many more controllability index configurations
have been constructed by using a different test point in each case. This makes
it difficult to construct a general test point that can be used in every case.

Now it is evident that there are two basic issues concerning invariant
factor assignment. One is the allowable degrees of the closed lesp invariant
factors (i.e. the sizes of the attainable cyclic blocks of A, where A comes
from a minimal realization of G(s)) and the other is the reachable invariant
polynomials themselves. That is assuming an allowable set of degrees is it
possible to reach all (or almost all) such polynomials. The necessary condi-
tion appearing in Rosenbrock-Hayton [20] is addressing the allowable degrees
issue. Here we have assumed a particular degree configuration (which inci-
dentally is compatible with their conditions) and are investigating the issue
of the order of the compensator needed for almost arbitrary invariant factor
assignment.

It is important to mention that different degree assignments require

different order compensators. This is evident from Theorem 6.5.

Theorem 6.5 Let P = ND"| be an mx2 strictly proper transfer function

where 1>0, n=ig and

- 1) A-1
D = Is™4D, ;s -+D,

= A-1
N Nps™ 4.4

nHqHl

Let g>0 and ¢(s) = s"+9+¢n+q+1s SL

Let . For which there exists a proper
compensator of order q making ¢,=¢,
W= {(N,D,s) RZAL n*q ¢2=¢3""'°z'1 the invariant factors

of the closed-loop system.
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2

Then a sufficient condition for W to be a generic subset of Rzu n+q is

qQ>u-1.
Proof:

Using the Sylvester Resultant formulation one can show [8] that if
q>u-1 then the set MC R2“2+"+q of (N,D,¢) for which a proper compensator

of order q exists and of the form:

p - p -

i, ;

1,0...0 1y 200 X a0, .. 0
x=|0 st | O 971 4

0 . 0 I
0 0 0
1 ¢ rop ’ o¥e ? o’m]
= q .
Y 0 SASTEN BEI O 0
- ..0 -

which makes ¢ the closed loop characteristic polynomial is generic.
XD+YN = ¢ where dete = 4.
But because of the structure of ¢ it can easily be shown that the set JC

Rz

)"'2"'""‘ for which the gcd's of the ixi minors of ¢ for 1<i<z-1 are all
equal to 1 is generic. Therefore the set JGM for which ®1= s ¢2=¢3-...=¢‘=1
are the invariant factors of & is a generic subset of Rz)"' 4.

Similar versions of this theorem have appeared in the past [2, 12, 20].
The approach taken here is different. As mentioned earlier in the case when

£>ma "dual" formulation and results can be obtained.




B SR e
: -t

-

7. Conclusions

The problem of generalized pole assignment using output feedback has

not been completely solved as yet. Great progress has been made as
evidenced by many important contributions [see references]. In this paper
using a formulation involving Generalized Sylvester Resultants we were
able to give new short proofs of earlier results as well as suggest
necessary and sufficient conditions for generic invariant factor assignment
in several cases. We believe that the ideas presented here can be used to

obtain many more results.

The authors wish to thank Professor Chris Byrnes for many helpful

discussions.
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